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Abstract
In response to the dynamic and ever-evolving landscape of network attacks and cybersecurity, this study aims to enhance
network security by identifying critical nodes and optimizing resource allocation within budget constraints. We introduce a
novel approach leveraging node centrality scores from four widely-recognized centrality measures. Our unique contribution
lies in converting these centrality metrics into actionable insights for identifying network attack probabilities, providing an
unconventional yet effective method to bolster network robustness. Additionally, we propose a closed-form expression corre-
lating network robustness with node-centric features, including importance scores and attack probabilities. At the core of our
approach lies the development of a nonlinear optimizationmodel that integrates predictive insights into node attack likelihood.
Through this framework, we successfully determine an optimal resource allocation strategy, minimizing cyberattack risks on
critical nodes while maximizing network robustness. Numerical results validate our approach, offering further insights into
network dynamics and improved resilience against emerging cybersecurity threats.

Keywords Centrality measure · Node detection · Performance evaluation · Optimization · Network security

1 Introduction

With the growing dependence on interconnected technolo-
gies, cybersecurity threats are becoming increasingly preva-
lent. Cyberattacks typically target specific nodes thatwe refer
to as critical nodes in communication networks. These nodes
are generally vulnerable components of the network and are
critical for protecting the network infrastructure and perfor-
mance.

Attackers typically exploit network vulnerabilities before
targeting critical nodes. For instance, if an attacker success-
fully infiltrates essential Internet providers, they can poten-
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tially disrupt global internet services, resulting inwidespread
outages and significant disruptions to various online services
and businesses. Similarly, infrastructure networks, such as
the Internet Backbone, Internet of Things (IoT) networks,
and Power Grids, are integral to our daily lives. They are
enticing targets for cyberattacks due to their historical lack
of robust security measures, the substantial impact that their
compromise can have, and the inherent difficulty in patching
entire networks due to their large scales.

Critical nodes can be the target of protective measures
anddefensivemonitoring for beneficial purposes.Anunusual
traffic pattern in a network could indicate that a computer or
a critical node has been hacked, and data is being transmit-
ted to unauthorized destinations, or that a computer is being
subjected to a denial-of-service attack. Therefore, to ensure
normal network functions are preserved, it is essential to
explore network anomalies and vulnerabilities by identifying
critical nodes, proactively monitoring them, and implement-
ing appropriate security measures to prevent or mitigate such
attacks.

The critical node detection problem is fundamental to a
variety of interesting applications. For example, the design
of network routing applications is often based on the selec-
tion of a set of nodes that form a path that connects a source
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and a destination. Hence data transmission’s security is pro-
portional to the criticality of the selected nodes. Unless the
nodes are secured, the higher the number of critical nodes are
in the path, the more the application is vulnerable. Moreover,
compromising even one node in the path, such as the router,
the hub or the switch in Fig. 1, may render the network non-
functional. Hence detecting and analysing critical nodes is
worth taking into account when designing secured network
applications.

While several studies have proposed various methods for
identifying critical nodes in networks (Shen et al., 2013;
Lalou et al., 2018a; Arulselvan et al., 2009a), it is important
to acknowledge that not all of these measures are univer-
sally effective, especially when dealing with specific types
of network vulnerabilities. This is particularly evident when
network fragmentation is a high priority, as illustrated in
Fig. 1, where the compromise of a router, for example, results
in the fragmentation of the network into two distinct compo-
nents.

Furthermore, it is worth noting that some of these identifi-
cationmethods rely on solving intractableNP-hard optimiza-
tion problems.While these approaches may provide valuable
insights, they can also be computationally expensive andmay
not be practical in all situations (Lalou and Tahraoui, 2018;
Arulselvan et al., 2009b; Walteros et al., 2019).

Graph-based features like centrality (Das et al., 2018) have
proven to be an effective method for critical node identi-
fication. However, in regards to communication networks,
there are still some gaps. Some researchers focus exclusively
on node centrality measures, particularly betweenness and
eigenvector centrality, without exploring other types of cen-
trality measures. In contrast, other researchers (Mitchell et
al., 2019) emphasize the significance of edge centralities and
their potential for network data analytics and event detec-
tion. However, it is essential to recognize the underlying
assumptions made by the centrality measures, such as how
information moves and replicates as it spreads across the

network. Unfortunately, these assumptions are often over-
looked.

This paper focuses on communication network and intro-
duces a novel approach that leverages insights derived from
the computation of node centrality scores using four widely-
recognized centralitymeasures.What distinguishes ourwork
is its unique ability to convert these centrality metrics
into actionable probabilities for predicting network attack.
Furthermore,we introduce a closed-formexpression formea-
suring network robustness, a significant contribution that has
reshaped our understanding of network security. We fur-
ther modeled the network security problem as a nonlinear
optimization problem, subject to a budget constraint. In par-
ticular, we solved a resource allocation problem aimed at
minimizing the probability of cyberattacks on critical nodes
while simultaneously maximizing network robustness. Con-
trary to existing research, we integrated the results obtained
from four widely used centrality methods to gain a holis-
tics view of the network, its probability of an attack and its
robustness.

The remainder of this paper is organized as follows.
Section 2 describes existing research within this domain

and explores its practical applications. Section 3 provides
an overview of the network model utilized in our study,
along with its underlying assumptions. Section 4 offers a
concise explanation of four centrality methods, which are
fundamental measures of node importance in network anal-
ysis. Section 5 outlines various network properties that are
central to our analysis, shedding light on the network’s key
characteristics and behaviors. Section 6 introduces a network
optimization model designed to provide insights into strate-
gies that enhance network security. Section 7 discusses the
integration of the four critical node centrality methods into
the network, demonstrating their role in bolstering network
security and offering practical implementation insights. Sec-
tion 8 summarizes our research findings and outlines future
research directions of this work.

Fig. 1 Communication network
where the removal of a node
such as the router or the hub is
sufficient to disconnect the
network
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2 RelatedWork and Applications

The identification of critical nodes has attracted significant
attention in various fields, including its application in social
networks for anomaly detection. A range of techniques (Li
et al., 2022; Rajalakshmi et al., 2023; Helmi et al., 2021;
Ganguli et al., 2020; Zaki et al., 2023; Riquelme and Vera,
2022), have been utilized to address this problem.

While our primary focus in this paper centers on commu-
nication networks, network vulnerability, and security issues,
it is crucial to acknowledge the broad relevance and impor-
tance of this problem in other domains. The critical node
identification problem has found applications in different
fields such as transportation (Gupta et al., 2023), social net-
works (Mazlumi and Kermani, 2022), biology (Liu et al.,
2020), public health (Alozie et al., 2022), fraud detection (Ke
et al., 2022), intrusion detection (Dang et al., 2023), image
processing (Zhang et al., 2022), and astronomical data anal-
ysis (Ahmed et al., 2016; Lalou et al., 2018b).

In the realm of network vulnerability assessment, much
of the existing research has focused on centrality measure-
ments, including degree, betweenness, closeness centralities,
and average shortest path length (Freeman, 1978; Devkota
et al., 2018; Kivimäki et al., 2016). These metrics have
been instrumental in understanding network structures. For
instance, recent work (Kim, 2020) showcased the practicality
of centrality measures in identifying central nodes involved
in malware distribution, offering insights into distinguishing
critical (i.e., malicious) nodes from non-critical (i.e., benign)
nodes.

Research efforts (Zheng et al., 2017; Wang et al., 2018)
have employed graph measurements to identify critical
nodes. These studies primarily relied onmetrics such as aver-
age similarity and global clustering coefficients. They found
that critical nodes tend to exhibit higher similarity and tighter
clustering, providing valuable insights into network vulner-
ability. It is important to highlight that these studies did not
comprehensively analyze the wide range of structural differ-
ences that may exist between critical and non-critical nodes.

In telecommunication networks, the identification of
critical nodes holds paramount importance, serving both
defensive and offensive purposes (Proselkov et al., 2021;
Alozie et al., 2021). These nodes play a dual role, either
as essential components to preserve the functionality of a
communication network or as prime targets for disruption
in adversarial contexts. Consider the case of terrorist and
insurgent networks (Rains, 2022; Ballinger, 2023), where the
primary objective is to serve the communication channels by
strategically removing critical nodes to disable terrorist net-
works (Arulselvan, 2009).

In the context of wireless communication networks, work
inCommander et al. (2007) formulated theWirelessNetwork

Jamming Problem as a critical node identification challenge.
In this scenario, the goal is to pinpoint critical nodes that,
when jammed, effectively neutralize an adversary’s wireless
communication network.

In sensor networks (Imran et al., 2013; Shukla, 2023),
beyond its role in anomaly detection, critical node identi-
fication plays a crucial role in optimizing energy utilization
and extending the operational lifespan of these nodes (Mitton
et al., 2009). Critical nodes, often traversed by many short-
est paths, can experience faster energy depletion, potentially
leading to network fragmentation (Gouvy et al., 2012).

In decentralized systems such as peer-to-peer and adhoc
networks (Jain and Reddy, 2013; Hamouda et al., 2011), a
major weakness is network disconnectivity. These systems
typically have a weak topology that can be easily fragmented
by targeting critical nodes, which maintain the network’s
entire connectivity. Hence, the identification of these critical
nodes is essential for designing robust and secure applica-
tions (Xing et al., 2023).

The works in Dinh and Thai (2011); Dinh et al. (2010);
Veremyev et al. (2015) have underscored the significance
of identifying critical nodes in network vulnerability assess-
ment. They converted network vulnerability assessment into
the problem of identifying critical nodes, measuring net-
work vulnerability by the minimum number of nodes whose
removal disrupts the network pairwise connectivity. Build-
ing on this foundation, research in Shen et al. (2013,
2012b, a) expanded this concept, assessing network vulnera-
bility across various graph types, including unit-disk graphs,
power-law graphs, and dynamic graphs.

Research in Yan et al. (2011); Invernizzi et al. (2014)
delved into the study of malware distribution networks using
centrality metrics and empirical approaches (Kim et al.,
2018). Others (Lozano et al., 2017; Faramondi et al., 2017,
2016; Lalou et al., 2018b) have framed the critical node iden-
tification problem as an optimization problem. This entails
the identification of a set of nodes whose removal would
significantly degrade network connectivity based on prede-
fined metrics. While these problems can be computationally
demanding, researchers have explored various approaches,
including dynamic programming and integer linear program-
ming (Ugurlu, 2022; Megzari et al., 2023; Laha et al., 2020),
to seek exact solutions. Moreover, there have been efforts
to devise approximation solutions with performance guar-
antees, employing heuristic algorithms and polynomial-time
approximation algorithms (Aringhieri et al., 2016; Ventresca
and Aleman, 2014; Berger et al., 2014).

Critical nodes in complex systems need to be identified for
protection or removal. Removal of critical nodes decreases
or minimizes a system’s ability to diffuse entities such as
information, goods, or diseases (Yang and An, 2020). Previ-
ous research suggested some vulnerability metrics, but there
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remains a lack of understanding how a metric changes (i.e.,
upper bound and lower bound) and how it is related to the
structure of a complex system (Johnson and Hogan, 2013).

3 NetworkModel Description

We model a communication network as an undirected graph
denoted by G = (V , E), as depicted in Fig. 2 (Ryan, 2015).
In this representation, V corresponds to the set of nodes,
encompassing various components such as routers, switches,
and similar elements, with cardinality |V | = n, and E
denotes the set of edges or links (E ⊂ V × V ), with car-
dinality |E | = m. For each node i ∈ V (i ∈ {1, . . . 32} is the
node identity in Fig. 2), we define N (i) = j ∈ V |(i, j) ∈ E
as the neighborhood set of node i . Let A denote the graph’s
adjacency matrix of size n× n, (i.e. Ai j = 1 if there is a link
between nodes i and j , otherwise Ai j = 0).

In communication networks, it is essential to acknowl-
edge the variability in node importance. Specific nodes, such
as routers, occupy central roles, and their removal could lead
to the loss of network connectivity and functionality. Con-
versely, centrally positioned nodes, such as servers, often
store significant data. In contrast, peripheral or end nodes
generally play a lesser role in network operations.

Our primary objective in this study is to identify and cat-
egorize nodes within the network (or graph), distinguishing
between those classified as important (or critical) and those of
lesser significance. The definition of node importance varies
based on the application (e.g., Yin et al., 2019; Deng, 2019;
Yong et al., 2022; Shi et al., 2016). In our case, we formalize
node importance according to the following definition.

Definition 1 In the context of communication networks, we
classify a node as important if it meets any of the following
criteria: (1) It generates, receives, or transmits a significant
volume of network traffic. (2) It functions as a repository for

Fig. 2 Network depicted as a graph G = (24, 32)

a substantial amount of sensitive data. (3) it plays an integral
role in critical communication paths, such as the shortest
path.

The concept of centrality plays a pivotal role in graph anal-
ysis, as highlighted in references such as (Zverovich, 2021;
Majeed and Rauf, 2020). It serves as a fundamental tool for
identifying critical nodes within a network. Various central-
ity methods have been developed, each shedding light on a
unique aspect of node importance, as discussed in Section 4.
In our study, we delve into four distinct centrality methods
to gain deeper insights into the network. Each of these meth-
ods quantifies the importance of a node i using a measure
denoted as C(i), generally referred to as its centrality score.
Consequently, we refine our Definition 1 of node importance
as follows:

Definition 2 A node i is deemed important if its centrality
measure C(i) surpasses a predefined threshold β > 0.

4 Centrality Measures

Below, we offer a concise overview of four commonly
employed centrality methods and their interpretation within
the context of communication networks.

4.1 Degree Centrality

Node degree centrality (Golbeck, 2013; Rodrigues, 2019;
Das et al., 2018) is a metric that quantifies a node’s direct
connections within a network. Mathematically, the degree
centrality score of node i can be computed as: Cd(i) =∑n

j=1 Ai j

n−1 , i, j ∈ V .
In communication networks, This metric is frequently

used to identify highly connected nodes, offering insights
into information flow patterns and potential vulnerabilities
of critical nodes. Nodes with a high degree centrality score
are extensively interconnected, enabling rapid information
dissemination throughout the network, often making them
information hubs. However, such nodes may also be sus-
ceptible to attacks or malware, potentially serving as weak
nodes. While their removal may not critically impact the
overall network performance, it can disrupt communication
and information flow.

Despite its simplicity and efficiency, degree centrality
does not consider the network’s global structure, hence its
complexity scales at O(m) (Das et al., 2018). Therefore, a
node with fewer highly important neighbors might possess
greater importance than a nodewith numerous less important
neighbors.
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4.2 Closeness Centrality

Node closeness centrality (Yen et al., 2013; Fernandes et al.,
2023; Das et al., 2018; Rodrigues, 2019) is a measure of how
close a particular node is to all other nodes in a network.
It is defined as the inverse of the sum of the shortest path
distances between a given node and all other nodes in the
network. Mathematically, the closeness centrality score of
node i can be calculated as: Cc(i) = (n − 1)/

∑ j
i di j where

di j is the shortest path distance between nodes i and j .
In communication networks, closeness centrality proves

invaluable for identifying potential malware vectors. Ele-
vated closeness centrality scores suggest nodes with swift
and efficient information transmission, including the propa-
gation of malware to other network nodes. Nodes exhibiting
significantly lower closeness centrality scores than expected,
given the network’s overall structure, may indicate issues
such as communication link failures or node isolation caused
by malware.

Closeness centrality offers a distinct advantage as it relies
on a comprehensive view of the network, rendering it highly
responsive to network changes. Nevertheless, this advantage
comes at a computational cost, of the order of O(mn) (Das
et al., 2018), particularly in the context of large networks.
Furthermore, closeness centrality’s dependence on node
reachability introduces constraints, making it unsuitable for
networks with disconnected components and networks char-
acterized by small diameters (Sariyüce et al., 2013).

4.3 Betweenness Centrality

Node betweenness centrality (Rodrigues, 2019) serves as a
metric to gauge the degree to which a specific node lies on
the shortest paths connecting other nodes within a network.
Mathematically, the betweenness centrality score of node i is
computed by summing the fraction of all-pairs shortest paths
that pass through node i : Cb(i) = 2

(n−1)(n−2)

∑
s �=i �=t

σst (i)
σst

.
Here, σst is the total number of shortest paths from node s to
node t and σst (i) is the number of those paths that include
node i .

Nodes with high betweenness centrality score play a piv-
otal role in facilitating efficient information flow across the
network. Serving as vital connectors between different net-
work segments, they appear on numerous shortest paths
connecting various nodes.

In communication networks and anomaly detection, nodes
with high betweenness centrality scores are often targeted
by attackers or malware due to their control over network
flow, making them susceptible to exploitation for disruptive
purposes. Their removal can result in network fragmentation,
leading to congestion and diminished performance (Powell
and Hopkins, 2015).

Similar to closeness centrality, betweenness centrality
offers the advantage of relying on a comprehensive view of
the network, as it computes the count of the shortest paths
passing through each node for every pair of nodes in the net-
work. This comes at a high computational cost ofO(m3) (Das
et al., 2018).

4.4 Eigenvector Centrality

Node eigenvector centrality (Rodrigues, 2019) is a measure
of a node’s importance, taking into account not only its num-
ber of connections but also the importance of its neighboring
nodes. Nodes with high eigenvector centrality are linked to
other nodes that are themselves important within the net-
work. Mathematically, eigenvector centrality score of node i
can be computed as: Ce(i) = 1

λ

∑
j∈N (i)(Ai j × x( j)). Here,

Ai j denotes the element of the adjacency matrix A that cor-
responds to the connection between nodes i and j , and x( j)
represents the centrality score of node j ∈ N (i). This rela-
tionship can be represented in matrix form as AX = λX ,
where X is a vector of eigenvector centrality scores.

In the context of communication networks and the study
of malware diffusion, eigenvector centrality proves invalu-
able in pinpointing nodes with a high potential for spreading
malware throughout the network. For instance, a node that
maintains connections with numerous highly central nodes,
such as network hubs, is likely to have a high eigenvector
centrality score, signifying its capability in the propagation
of malware.

It is worth noting that eigenvector centrality takes into
account the global structure of the network, contributing to
its computational complexity, which scales at O(n2) (Das et
al., 2018). Additionally, it may not be suitable for graphs that
lack strong connectivity or contain loops.

In summary, the aforementioned centrality methods are
instrumental in the identification of critical nodes (i.e., nodes
with high centrality scores). They provide network adminis-
trators with themeans to proactively address potential issues,
thus safeguarding the overall performance of the network.

5 Network Properties

For the remainder of this paper, as we delve into our analy-
sis, computations, and numerical findings, we will consider
a network comprising 24 nodes and 32 edges, as depicted in
Fig. 2. In this section, our focus shifts towards harnessing
node centrality as a tool to glean insights and extract essen-
tial network properties. These insights will provide valuable
guidance on how to enhance network security.
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Table 1 Likelihood (pi ) of
compromising a critical node (i)
given its centrality measure
(Cx (i), x ∈ M) for the various
centrality methods

Degree Closeness Betweeness Eigenvector
Centrality Centrality Centrality Centrality
Node i Cd (i) pi Node i Cc(i) pi Node i Cb(i) pi Node i Ce(i) pi

10 0.696 0.444 10 0.639 0.193 10 0.787 0.4712 10 0.641 0.320

2 0.217 0.139 2 0.500 0.151 2 0.248 0.1484 2 0.288 0.144

1 0.130 0.083 35 0.451 0.136 12 0.184 0.1101 3 0.224 0.112

3 0.130 0.083 17 0.442 0.133 17 0.158 0.0947 35 0.221 0.110

24 0.130 0.083 8 0.434 0.131 1 0.142 0.0852 33 0.219 0.110

33 0.130 0.083 16 0.434 0.131 28 0.101 0.0604 24 0.207 0.104

35 0.130 0.083 3 0.418 0.126 35 0.050 0.0300 8 0.201 0.100

Rx (%) 30.96 33.91 30.25 33.01

5.1 Critical Nodes Identification

We will compute the importance (centrality) score for each
node in the graph depicted in Fig. 2, using the four centrality
measures introduced in Section 4. We will use Definition 2
to evaluate node importance. For the purpose of our analy-
sis, we will focus on the set of critical nodes which score is
higher than agiven thresholdβx ≥ 0, x ∈ M = {d, c, b, e}.1
Table 1 displays seven nodes that satisfy our criteria when
βd = 0.10, βc = 0.40, βb = 0.05, βe = 0.20. Note that βx

can be assigned a constant value β across all methods. How-
ever, this approach results in a variable number of critical
nodes for each method. To facilitate our analysis and pre-
sentation, we tailor βx to each method to ensure a consistent
number of critical nodes. Let Sx , x ∈ M, be the set of these
critical nodes in the network where |Sx | = k.

The data presented in Table 1 consistently highlight that
node 10 emerges as the most critical node in the network,
closely followed by node 2, across the four critical measure
methods. Moreover, nodes 10, 2, and 35 consistently rank
among the top 7 critical nodes. It is important to highlight
that, while we’ve presented a subset of the network’s crit-
ical nodes, our computations unequivocally identify node
7 as the least critical node across all methods (Cd(7) =
0.043,Cc(7) = 0.239,Cb(7) = 0,Ce(7) = 0.003). The
network topology, as depicted in Fig. 2, aligns with these
findings. Node 7 occupies a peripheral position in the net-
work, distant from the majority of the nodes and linked to
only one node (node 1), contributing to its low importance
score. In contrast, node 10 holds a central position, boast-
ing numerous connections that bring it into close proximity
with a larger number of nodes, thereby substantiating its high
importance score.

1 d: degree, c: closeness, b: betweenness, e: eigenvector centralitymeth-
ods

5.2 Likelihood of a Critical Node Attack

In practice, a node’s susceptibility to a cyberattack is influ-
enced by a multitude of factors, including its position within
the network, the sensitivity of the data it stores, and its vul-
nerability to specific attack vectors. Moreover, since nodes
in a network are interconnected, the likelihood of an attack
is intricately tied to the unique characteristics of all nodes,
particularly those in close proximity.

In our analysis, we make the assumption that these influ-
encing factors and node attributes are encapsulatedwithin the
node centrality measures, Cx (i), x ∈ M. Leveraging these
centrality measures, particularly those associated with criti-
cal nodes, significantly enhances our ability to evaluate the
network’s vulnerability to potential cyberattacks.

To streamline our analysis and make meaningful compar-
isons, we have standardized each centrality score which we
denote as pi to ensure that the sum of centralities across all
critical nodes adds up to one (

∑k
i pi = 1). This standardiza-

tion process allows us to provide the following interpretation
of the pi values.

Assumption 1 The normalized centrality measure pi for
node i denotes its vulnerability to cyberattacks, with higher
values indicating a greater likelihoodof being targeted.Math-
ematically, pi is defined as:

pi = Cx (i)/
∑

j∈Sx
Cx ( j), x ∈ M

and can be interpreted as the probability of attack of node i .

The above interpretation introduces a novel concept that
correlates a node’s centrality measure with its susceptibility
to attacks. Table 1 offers insights into the probability of a crit-
ical node being targeted in an attack using all four centrality
methods.

Note that in Definition 2, the threshold β can be set as the
probability cutoff.
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5.3 Network Robustness

The concept of network robustness varies based on the appli-
cation and the objective (e.g., Liu et al., 2017; Ghayoori and
Leon-Garcia, 2013; Si et al., 2022; Cai et al., 2021; Davis
et al., 2021; Lou et al., 2023; Hamouda, 2024). Within the
context of network security, the robustness of a network is
intricately connected to the security of its individual nodes.
In this work, to quantify a network robustness, we introduce
the notation Rx , x ∈ M and provide the following definition:

Definition 3 The network robustness, Rx , quantifies the
probability that the identified k critical nodes in the network
remain secure. It is defined as a function of the node-level
probability of compromise, pi , associated with each node
i ∈ Sx under a particular centrality method x ∈ M:

Rx =
∏

i∈Sx
(1 − pi ). (1)

Note that the higher the probabilities, pi ’s, the lower the
robustness Rx . Thus, the more the network is vulnerable.
In essence, Rx represents the network’s capacity to endure
potential attacks by accounting for the combined resilience
of its critical nodes. As depicted in Table 1, our numerical
findings illustrate variations in network robustness depend-
ing on the applied centrality method. Closeness centrality
exhibits the highest network robustness at 33.91%, while
betweenness centrality demonstrates the lowest at 30.25%,
indicating a relatively lower level of network robustness for
the latter.

The computation of Rx for centrality method x ∈ M is
outlined in Algorithm 1.

Algorithm 1 Calculate Network Robustness Rx .
Require: Graph G = (V , E), Centrality Method x ∈ M
1: S ⇐ ∅
2: C ⇐ compute_centrali t y(V )

3: while |S| ≤ |V | do
4: i = argmax{C},∀i ∈ V \ S
5: S ← S ∪ {i}
6: end while
7: C ← Sort vector C in descending order
8: Sx ← Choose the top k central nodes in S.
9: p = C/

∑
i∈Sx C(i)

10: Rx = ∏
i∈Sx (1 − pi )

11: return Rx

The computational complexity of Algorithm 1 reduces
to the complexity of the most computationally demanding
method. In this case, it is the betweenness centrality which
complexity is of the order of O(m3) (see Section 4), where
m is the number of edges in the network.

6 Modeling Network Security

In this section, our focus centers on augmenting network
security through the reinforcement ofmeasures implemented
at critical nodes. This entails investing in security enhance-
ments for individual nodes, denoted as si , i ∈ Sx∈M. Striking
a balance between the cost of these security measures and the
potential risk of a security breach is of utmost significance
when devising strategies to fortify critical nodes.

Notably, there exists an inverse relationship between the
likelihood of compromising a critical node and the level of
security investment. Leveraging this relationship, we for-
mulate critical node security as a nonlinear optimization
problem. Our objective is to determine the optimal values
of investment or resource si for i ∈ Sx , that minimizes the
probability of compromising critical nodes while adhering to
a specified budget constraint.

Let s = (s1, . . . , sk) denote the allocated resources to
nodes i ∈ {1, . . . k}.Weuse the notation Rx (s) to indicate that
the robustness Rx is computed under resource allocation (s).
Furthermore, we express pi as a function of si and denote it
as pi (si ). In this paper, we assume that pi (si ) = pi (0)−αsi ,
where α is a predefined positive constant, and pi (0) is the
probability of node i being compromisedwhen si = 0, i.e. the
probability of a node attack before any security investment.
α can be interpreted as the sensitivity of the probability of
attack to the security investment level. It is worth noting that
alternative functions, including quadratic functions, can be
considered to establish the relationship between pi and si .

In the following analysis, we explore two distinct scenar-
ios.

6.1 Scenario 1: Enhancing Security of all Critical
Nodes

Below,we present an optimizationmodel designed to achieve
efficient resource allocation within the defined budget con-
straint, denoted as B (as per Eq. 4). In simpler terms, our goal
is to allocate B units of resources (i.e. dollars) to enhance the
security of critical nodes, thereby minimizing their vulnera-
bility to cyberattacks and maximizing network robustness.

max Rx (s) =
∏

i∈Sx
(1 − pi (si )). (2)

s.t. 0 ≤ pi (si ) = pi (0) − αsi ≤ 1 (3)
∑

i∈Sx
si ≤ B (4)

si ≥ 0,∀i ∈ Sx . (5)

The formulation outlined above constitutes a nonlinear
optimization problem where constraint Eq. 3, defines the
probability of a cyberattack occuring at node i . Note that
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in constraint Eq. 3 the constant α is the rate at which an
attack probability decreases with each dollar of resource
invested to secure a node. It can also be thought of as a
scaling parameter for the budget level B. Feasible values
of α are bounded above by min{pi (0)/B} and below by
0. The choice of α may stem from theoretical insights or
expert judgment, derived from mathematical models captur-
ing system dynamics. Alternatively, it can be estimated using
empirical data, practical observations, and experiments or
simulations to observe the impact of investment changes on
attack probability. In summary, estimating α is an iterative
process, balancing theoretical expectations with real-world
observations.

Proposition 2 The function Rx (s) is convex.

Proof The proof of convexity is straightforward. We begin
by applying the logarithm (log) of the product terms of
Rx (s), resulting in log(

∏
i∈Sx (1 − pi (si ))). This simplifies

to:
∑

i∈Sx log(1 − pi (si )). Recognizing that (1 − pi (si )) is
convex in si , the log preserves convexity, and since the sum
of convex functions is convex, we conclude that the function
Rx (s) is convex. �

Proposition 3 The optimal allocation s∗

i , i ∈ Sx is obtained
using Algorithm 2:

Algorithm 2 Optimal Resource Allocation.
Require: Probabilities p, budget B, set of critical nodes Sx
Ensure: Sx �= ∅
1: Rank the probabilities pi (0) in descending order, and indexed in

ascending order.
2: Let s∗

i denote the optimal allocation to node i .

3: Let s∗
1 ← min{ p1(0)

α
, B}

4: for all i = 2, . . . , |Sx | do
5: s∗

i ← min{ pi (0)
α

, B − ∑i−1
j=1 s

∗
j }

6: i ← i + 1
7: end for
8: return s∗ = (s∗

1 , . . . , s∗
k )

Proof The Lagrangian can be written as:

L(s, λ, μ) = Rx (s) +
k∑

j=1

λ j (p j (0) − αs j − 1)

+ μ(

k∑

j=1

s j − B)

Here, λ j , j ∈ {1, . . . , k} and μ are non-negative Lagrangian
multipliers. Since Rx (s) is convex in s, the K.K.T conditions

are sufficient for optimality of s. The optimality conditions
can be written as:

∂L(s, λ, μ)

∂si
= α

k∏

j=1
j �=i

(1 − p j (0) + αs j ) − αλi + μ = 0

(6)

∂L(s, λ, μ)

∂λi
= λi (pi (0) + αsi − 1) = 0, i ∈ {1, . . . , k}

(7)

∂L(s, λ, μ)

∂μi
= μ(

k∑

j=1

s j − B) (8)

Here Eqs. 7 and 8 represent the complementary slackness
conditions associated with constraints Eqs. 3 and 4. From
Eq. 6, we have,

α(1 − pi (0) + αsi )
k∏

j �=i

(1 − p j (0) + αs j )

− αλi (1 − pi (0) + αsi ) + μ(1 − pi (0) + αsi ) = 0 (9)

Note that the first term in the LHS of the above equation,
is equal to αRx (s) and the second term is equal to zero due
to the complementary slackness conditions Eq. 7. Hence,
αRx (s) + μ(1 − pi (0) + αsi ) = 0, and can be rewritten
as: Rx (s) = −μ

α
(1 − pi (0) + αsi ), ∀i ∈ {1, . . . , k}. Thus,

Rx (s) = −μ
α
(1 − pi (0) + αsi ) = −μ

α
(1 − p j (0) + αs j ).

Note that the budget constraint Eq. 4must be binding since
it is trivial to show that Rx (s′) > Rx (s), for s′ = s + be, for
any feasible s and positive constant b. Here, e is the unit
vector of appropriate dimension. Hence,

si = pi (0) − p j (0)

α
+ s j . (10)

As a result, si ≥ s j , iff pi (0) ≥ p j (0).
Therefore, if we rank the nodes according to their proba-

bilities, p j (0), in descending order, the optimal allocation is
as follows:

s∗
1 = min{ p1(0)

α
, B}, . . . ,

s∗
i = min{ pi (0)

α
, B −

i−1∑

j=1

s∗
j } (11)

�

Note that Algorithm 2 has a computation complexity of

O(n log n).
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Wesolved the above optimization problem focusing on the
example network depicted in Fig. 2. The optimal values of pi ,
denoted as pi (s∗

i ), are presented in Table 2. Notably, as the

Table 2 Probabilities of attack (pi (s∗)) for varied budgets (B) across
different centrality measures

Degree centrality

B → 0 100 200 300 400 500

Node i pi (s∗)
10 0.444 0.000 0.000 0.000 0.000 0.000

2 0.139 0.139 0.000 0.000 0.000 0.000

1 0.083 0.083 0.083 0.067 0.050 0.033

3 0.083 0.083 0.083 0.067 0.050 0.033

24 0.083 0.083 0.083 0.067 0.050 0.033

33 0.083 0.083 0.083 0.067 0.050 0.033

35 0.083 0.083 0.083 0.067 0.050 0.033

Rd (s)(%) 30.96 55.73 64.72 70.82 77.38 84.41

Closeness centrality

B → 0 100 200 300 400 500

Node i pi (s∗)
10 0.193 0.000 0.000 0.000 0.000 0.000

2 0.151 0.151 0.021 0.000 0.000 0.000

35 0.136 0.136 0.117 0.077 0.046 0.019

17 0.133 0.133 0.133 0.095 0.065 0.038

8 0.131 0.131 0.131 0.112 0.083 0.056

16 0.131 0.131 0.131 0.112 0.083 0.056

3 0.126 0.126 0.126 0.126 0.115 0.090

Rc(s)(%) 33.91 42.00 49.48 57.50 66.46 76.48

Betweenness centrality

B → 0 100 200 300 400 500

Node i pi (s∗)
10 0.471 0.000 0.000 0.000 0.000 0.000

2 0.148 0.148 0.000 0.000 0.000 0.000

12 0.110 0.110 0.110 0.000 0.000 0.000

17 0.095 0.095 0.095 0.095 0.000 0.000

1 0.085 0.085 0.085 0.085 0.085 0.000

28 0.060 0.060 0.060 0.060 0.060 0.060

35 0.030 0.030 0.030 0.030 0.030 0.030

Rb(s)(%) 30.25 57.20 67.17 75.48 83.37 91.14

Eigenvector centrality

B → 0 100 200 300 400 500

Node i pi (s∗)
10 0.320 0.000 0.000 0.000 0.000 0.000

2 0.144 0.144 0.000 0.000 0.000 0.000

3 0.112 0.112 0.112 0.063 0.027 0.000

35 0.111 0.111 0.111 0.076 0.040 0.012

33 0.110 0.110 0.110 0.083 0.048 0.020

24 0.104 0.104 0.104 0.104 0.100 0.074

8 0.100 0.100 0.100 0.100 0.100 0.100

Re(s)(%) 33.01 48.56 56.72 64.08 72.05 80.71

budget increases progressively from B = 100 to B = 500,
the likelihood of a successful attack decreases significantly,
leading to a substantial enhancement in network robustness.
Note that we use a budget of zero as our baseline for compar-
ison. Specifically, when considering betweenness centrality,
we observe themost substantial increase in robustness, rising
from 30.25% with a zero budget to 91.14% with a budget of
500. However, the use of closeness centrality results in the
lowest improvement in robustness, albeit a notable one, ris-
ing from 33.91% with no budget to 76.48% when the budget
reaches 500.

Figure 3 illustrates the correlation between network
robustness and budget across all centrality measure methods,
demonstrating a positive relationship. We also observe that
network robustness, Rx (s), increases quasilinearly as a func-
tion of the budget. This observation is particularly significant
for real-world networks, as it allows for the exploitation of
this quasilinear relationship to avoid solving large nonlinear
optimization problems.

In the following, we focus on the resource allocation that
led to improving the network robustness. Our findings, as
summarized in Table 3, reveal that using degree centrality
method for instance, in the absence of any budget allocated
to safeguard critical node 10, the probability of a success-
ful attack stands at 0.444. However, with an investment of
100 out of the available 300 budget, we managed to reduce
the attack probability by 100% (from pi (0) = 0.444 to
pi (100) = 0). These values are highlighted in bold inTable 3.
In fact, for node 10 the probability of an attack has dropped
to zero for B > 0 across all centrality methods. Similar
trends are observed, for the other critical nodes, as the bud-
get increases.

In cases with limited budget (e.g., B = 100), a majority
of the resources are directed towards node 10. Conversely,
in cases with a more generous budget (e.g., B = 500), sub-
stantial resources are allocated to nodes 10 and 2, effectively
reducing the attack probability to zero for both nodes, while
the remaining funds are distributed among less critical nodes.

Our analysis yields analogous results for the other cen-
trality methods.

Note that the problem described by Eqs. 2-5 can be for-
mulated to minimize the security investment cost to ensure a
certain level of network robustness.

6.2 Scenario 2: Enhancing Security of CommonTop
Critical Nodes

Ideally, comprehensive security measures should be imple-
mented across all critical nodes as in scenario 1. However,
practical scenarios often present a challenge due to budget
constraints, particularly in the context of large networks.
Consequently, it may not be sustainable to invest in the secu-
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Fig. 3 Budget-dependent
network robustness across
different centrality measures -
Scenario 1
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rity of all critical nodes. Prioritizing the allocation of the
available budget to protect a select subset of the most critical
nodes can yield effective results. Therefore, in the subsequent
discussion, we will assume our limited budget, B, will be
allocated to enhance the security of specific number, denoted
as a, nodes among the total pool of k critical nodes (a > 0).

Our numerical results have revealed a consensus among
four critical methods, all identifying nodes 10 and 2 as the
most critical. Therefore, we will concentrate our efforts and
allocate resources to secure these two nodes, with a = 2.
When a = k, this scenario entails securing all critical nodes,
which is described in scenario 1.

Let A ⊂ Sx denote the set of the a nodes. We intro-
duce the notation πax (s), which represents the probability
of a simultaneous attack on the nodes i ∈ A considering the
assumptions described above.We formulate the optimization
problem given in Eqs. 12-15 to determine the optimal alloca-
tion s that minimizes the probability πax (s). This probability
quantifies the risk of a critical nodes being compromised
within the specified budget constraint B, as expressed in con-
straint Eq. 14.

min πax (s) =
∑

SA⊂A

∏

i∈SA
pi (si )

∏

j∈Sx\SA
(1 − p j (s j )) (12)

s.t. 0 ≤ pi (si ) = p0 − αsi ≤ 1 (13)
∑

i∈Sx
si ≤ B (14)

si ≥ 0,∀i ∈ Sx (15)

The formulation outlined above constitutes a nonlinear
optimization problem and SA is a subset of A.

Proposition 4 The function πax (s) is convex.

Proof The proof follows the same steps as the one for propo-
sition 2. �


We solved the aforementioned optimization problem by
considering budgets within the range of 0 to 500. The
numerical results, presented inFig. 4, reveal that the between-
ness centrality measure outperforms the other methods, with
degree centrality closely following, while closeness central-
ity exhibits the lowest performance. Allmethods consistently
exhibit a positive correlationbetweennetwork robustness and
budget.

It is important to highlight that the levels of robustness
achieved in this scenario are slightly lower compared to
those in scenario 1, albeit not significantly so. The differ-
ence becomes more pronounced, particularly with higher
budgets. Specifically, the difference in performance is as fol-
lows: less than 7.5% for degree centrality, less than 11.8% for
closeness centrality, 13.1% for betweenness centrality, and
9% for eigenvector centrality. However, for lower budgets
(B < 300), the difference is less than 4%. This discrepancy
can be justified since securing all critical nodes may entail
additional costs (management, administration, etc.) beyond
the scope of this study.

It is noteworthy that the results presented in Figs.3 and 4
show similar outcomes when the budget (B) is set to 100. In
both scenarios, the $100 budget is only sufficient to reduce
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Table 3 Optimal budget allocation (s∗
i ) for critical nodes, across different centrality measures, leading to attack probability reduction (p↓)

Degree centrality

B = 0 B = 100 B = 200 B = 300 B = 400 B = 500

Node i pi (s∗
i ) s∗

i p↓(%) s∗
i p↓(%) s∗

i p↓(%) s∗
i p↓(%) s∗

i p↓(%)

10 0.444 100 100 100.000 100 100 100 100 100 100 100

2 0.139 0.000 0 100 100 100 100 100 100 100 100

1 0.083 0.000 0 0.001 0 20.002 20 40.002 40 60.001 60

3 0.083 0.000 0 0.001 0 20.002 20 40.002 40 60.001 60

24 0.083 0.000 0 0.001 0 20.002 20 40.002 40 60.001 60

33 0.083 0.000 0 0.001 0 20.002 20 40.001 40 60.001 60

35 0.083 0.000 0 0.001 0 19.993 20 39.995 40 59.997 60

Closeness centrality

B = 0 B = 100 B = 200 B = 300 B = 400 B = 500

Node i pi (s∗
i ) s∗

i p↓(%) s∗
i p↓(%) s∗

i p↓(%) s∗
i p↓(%) s∗

i p↓(%)

10 0.193 100 100 100 100 100 100 100 100 100 100

2 0.151 0.007 0 85.842 86 99.983 100 100 100 100 100

35 0.136 0.001 0 13.787 14 43.039 43 66.181 66 86.284 86

17 0.133 0.001 0 0.366 0 28.585 29 51.487 51 71.450 71

8 0.131 0.000 0 0.001 0 14.188 14 36.947 37 56.868 57

16 0.131 0.001 0 0.005 0 14.188 14 36.946 37 56.868 57

3 0.126 0.001 0 0.002 0 0.019 0 8.440 8 28.530 28

Betweenness centrality

B = 0 B = 100 B = 200 B = 300 B = 400 B = 500

Node i pi (s∗
i ) s∗

i p↓(%) s∗
i p↓(%) s∗

i p↓(%) s∗
i p↓(%) s∗

i p↓(%)

10 0.471 100 100 100 100 100 100 100 100 100 100

2 0.148 0.001 0 100 100 100 100 100 100 100 100

12 0.110 0.000 0 0.001 0 100 100 100 100 100 100

17 0.095 0.000 0 0.000 0 0.020 0 100 100 100 100

1 0.085 0.000 0 0.000 0 0.001 0 0.013 0 100 100

28 0.060 0.000 0 0.000 0 0.000 0 0.000 0 0.001 0

35 0.03 0.000 0 0.000 0 0.000 0 0.000 0 0.000 0

Eigenvector centrality

B = 0 B = 100 B = 200 B = 300 B = 400 B = 500

Node i pi (s∗
i ) s∗

i p↓(%) s∗
i p↓(%) s∗

i p↓(%) s∗
i p↓(%) s∗

i p↓(%)

10 0.320 100 100 100 100 100 100 100 100 100 100

2 0.144 0.001 0 100 100 100 100 100 100 100 100

3 0.112 0.001 0 0.001 0 43.902 44 76.250 76 100 100

35 0.111 0.001 0 0.001 0 31.681 32 63.733 64 89.460 90

33 0.110 0.001 0 0.003 0 24.399 24 56.287 56 81.829 82

24 0.104 0.001 0 0.001 0 0.013 0 3.729 4 28.721 29

8 0.100 0.000 0 0.000 0 0.006 0 0.001 0 0.009 0

the probability of attack for node 10 (the most important
node) to zero. Consequently, no resources were allocated to
any other nodes. Therefore, the robustness remains the same
under both scenarios.However,with a larger budget, scenario

1 allocates resources to multiple nodes, potentially covering
all nodes. In contrast, scenario 2 restricts the budget to the
top k critical nodes. As a result, the robustness behavior of
the two scenarios diverges beyond a budget of $100.
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Fig. 4 Budget-dependent
network robustness across
different centrality measures -
Scenario 2
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7 Integrating Critical Node Centrality
Methods to Enhance Network Security

When computing node centrality measures, results vary
among different methods, each offering unique insights into
network dynamics. Our numerical results in Table 1 con-
sistently reveal that all critical methods identify the same
top critical nodes, specifically nodes 10 and 2. Our analysis
also reveals that among the k critical nodes considered in
our study, there is an overlap in those identified by the four
centralitymethods. This consistency persisted across the var-
ious networks we analyzed. Moreover, as shown in Fig. 3, no
single centrality method monotonically dominates the others
in terms of network robustness, indicating that each method
captures distinct network features. However, it is common
for researchers to rely on a single critical node identification
method tailored to their specific application.

These observations have motivated our investigation into
using all methods to identify critical nodes, allowing us to
encompass the full spectrum of intrinsic network character-
istics through its critical nodes.

We focus on the k critical nodes derived from all four
centrality methods, described in Section 4, aiming to har-
ness both their shared characteristics and distinctions to
bolster network security. Our objective is to assess their com-
bined influence on network security. To achieve this, we start
by forming the union of all nodes identified as critical by
the four methods. We calculate the centrality of each node
by aggregating its centrality values from all four methods.
Subsequently, we determine the attack probability by nor-

malizing the cumulative centrality measure for each node.
Finally, we assess the network robustness using Eq. 1.

We outline our integration method for computing the
cumulative centrality values, denoted as C4, the probabil-
ity of an attack, denoted as p, and the network robustness,
denoted as R4, in Algorithm 3.

Algorithm 3 Calculate Network Robustness R4.
Require: Graph G = (V , E), Centrality Methods M.
Ensure: V �= ∅
1: for all x ∈ M do
2: Sx ⇐ ∅
3: C ⇐ compute_centrali t y(V , x)
4: while |Sx | ≤ |V | do
5: i = argmax{C},∀i ∈ V \ Sx
6: Sx ← Sx ∪ {i}
7: end while
8: C ← Sort vector C in descending order
9: Sx ← Select k highest critical nodes
10: end for
11: S = ∪x∈MSx
12: for all i ∈ S do
13: C4(i) = ∑4

x=1 Cx (i)
14: end for
15: p = C4/

∑
i∈S

∑
x∈M Cx (i)

16: R4 = ∏
i∈S(1 − pi )

17: return R4

For the sample network depicted in Fig. 2, the applica-
tion of the algorithm described above yielded an R4 value of
34.5%. This represents a notable improvement over individ-
ual centralitymethods: 10.26%over degree centrality, 1.71%
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over closeness centrality, 12.31% over betweenness central-
ity, and 4.31% over eigenvector centrality, when each is used
in isolation. We observed similar positive improvement con-
sidering various other networks. For brevity, those results are
not shown here.

In conclusion, the utilization of centrality methods in iso-
lation may inadvertently disregard valuable insights regard-
ing node importance. Our findings underscore the signifi-
cance of integrating allmethods, as it provides amore holistic
perspective on network security, uncovering crucial insights
that might otherwise remain hidden.

8 Conclusion

Our research introduces a novel approach that leverages
insights derived from computing node centrality scores using
four widely-recognized centrality measures. The uniqueness
of our work lies in its ability to convert these centrality
measures into actionable insights for identifying network
attack probabilities, offering an unconventional yet effective
approach to strengthening network robustness.

Additionally, we propose a novel closed-form expression
for network robustness, unveiling its direct correlation with
node-centric features, including importance and attack prob-
abilities.

These findings have transformed our understanding of net-
work security, as we formulated the problem as a nonlinear
optimization problem, under budget constraints. Within this
optimization framework, we have successfully identified an
optimal resource allocation strategy, with the goal of mini-
mizing the probability of cyberattacks on critical nodeswhile
maximizing network robustness.

Furthermore, our results highlight the significance of inte-
grating centrality methods, as depending on them in isolation
may lead to overlooking valuable information concerning
node importance. We show that the integration of all meth-
ods yields a more comprehensive and holistic understanding
of network security, ultimately resulting in enhanced network
robustness.

One limitation of our proposed method is its dependence
on the selected centralitymethod,which introduces a reliance
on its time and space complexities. Moreover, it is known
in the literature that computing centrality measures can be
challenging for very large networks. Although Algorithm 2
remains computationally efficient for very large networks,
addressing problems under scenario 2 remains challenging.
Nevertheless, approximate solutions can be obtained using
methods such as stochastic gradient descent.

Our future work will be directed towards validating our
research outcomes in larger andmore complex network envi-
ronments, as well as refining and advancing our critical
node identification techniques. We believe that these ongo-

ing efforts will further solidify the practical applicability
and effectiveness of our approach in safeguarding critical
infrastructure and strengthening cybersecurity measures in
an ever-evolving digital landscape.
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