
Detecting CAM Flooding Attacks in Vehicular
Networks Using Online K-means Algorithm

Harir Razzazi∗, Farid Nait-Abdesselam∗ and Essia Hamouda†
∗University of Missouri Kansas City, USA

†California State University San Bernardino, USA

Abstract—Vehicular Networks enable vehicles to establish
communication with both other vehicles and fixed road site units
for the purpose of sharing critical safety and road traffic infor-
mation. These networks contribute to the development of a self-
aware, efficient, secure, and partially autonomous transportation
system by facilitating the exchange and collection of Cooperative
Awareness Messages (CAMs). However, vehicular networks are
vulnerable to security attacks, where one or more vehicles may
flood neighboring vehicles with malicious CAM messages. To
effectively detect such attacks, an unsupervised online learning
approach, such as our proposed modified version of the online
K-means algorithm, can be employed. We evaluate this method
using seven datasets, achieving nearly optimal detection perfor-
mance. Our approach outperforms both the traditional online
K-means algorithm and three other clustering methods, yielding
higher accuracy and F1-scores.

Index Terms—Network security, Ad Hoc networks, Clustering,
Denial-of-service attacks.

I. INTRODUCTION

Vehicular networks, also known as Vehicular Ad Hoc
Networks (VANETs), have emerged as a promising technol-
ogy to enhance road safety, traffic efficiency, and overall
transportation systems. Vehicular networks enable vehicles to
communicate with each other and with infrastructure com-
ponents, such as traffic lights and road sensors, facilitating
the exchange of real-time information and enabling various
applications. These applications include cooperative collision
warning, intersection management, traffic congestion control,
and intelligent transportation systems [1].

The foundation of vehicular networks lies in Cooperative
Awareness Messages (CAMs), which vehicles exchange to
share critical information about their current state, including
position, speed, acceleration, and heading. CAMs play a
pivotal role in enabling cooperative safety applications and
facilitating efficient traffic management. By leveraging the
shared information, vehicles can make informed decisions,
react to potential hazards, and collaborate to improve overall
road safety and traffic flow [2].

However, the widespread deployment of vehicular networks
also brings forth significant security challenges and concerns.
The unique characteristics of vehicular networks, such as high
mobility, dynamic topology, and resource constraints, pose
unique security vulnerabilities that need to be addressed. These
vulnerabilities can be exploited by malicious entities, leading
to potential threats and attacks that can severely impact the
reliability, safety, and privacy of vehicular networks [3].

One of the primary security concerns in vehicular networks
is the risk of unauthorized access and intrusion. As vehicular
networks operate in an open and distributed environment, there
is a possibility of unauthorized entities attempting to gain
access to the network, posing as legitimate vehicles or infras-
tructure components. Unauthorized access can lead to various
malicious activities, such as injecting false or forged CAMs,
disrupting communication, manipulating traffic flow, or com-
promising the privacy of vehicles and their occupants [4].
Another significant security problem in vehicular networks is
the threat of message tampering and data integrity violation.
Since the information shared through CAMs is crucial for
cooperative safety applications, ensuring the authenticity and
integrity of these messages is paramount. Malicious entities
may attempt to tamper with CAMs, modify their content, or
inject false data, leading to inaccurate and unreliable informa-
tion. Such attacks can undermine the effectiveness of safety
applications and compromise the overall trustworthiness of
the network [5]. Moreover, vehicular networks are susceptible
to various types of denial-of-service (DoS) attacks. One of
the most notable DoS attacks in vehicular networks is CAM
flooding. In a CAM flooding attack, malicious entities flood
the network with a large number of fake or forged CAMs,
overwhelming the network’s resources and causing congestion.
This flood of bogus messages can disrupt the normal oper-
ation of the network, introduce communication delays, and
hinder the ability of legitimate vehicles to efficiently exchange
authentic safety-related information. CAM flooding attacks
can result in severe consequences, such as compromised
road safety, increased collision risks, and degraded network
performance [6].

In this paper, we propose a modified version of the online
K-means algorithm specifically designed for detecting DoS
attacks on CAM messages. Our experimental results showcase
the effectiveness of our method in accurately detecting CAM
flooding attacks. Our approach achieved nearly optimal de-
tection performance, outperforming other clustering methods
across all evaluation metrics: (2), (3) and (4). The modified
online K-means algorithm incorporates several enhancements
to improve the accuracy and efficiency of attack detection.
First, we introduce a feature extraction process that captures
relevant characteristics from CAM messages, such as source
addresses, packet sizes, and inter-arrival times. These features
provide valuable insights into the traffic patterns and behavior
of CAM messages, enabling the algorithm to distinguish

2023 IEEE Global Communications Conference: Mobile and Wireless Networks

2992

between legitimate and malicious traffic. Next, the algorithm
utilizes a dynamic clustering mechanism that adapts to the
changing network conditions and identifies clusters of CAM
messages associated with potential attacks. Through the con-
tinuous updating of clusters, particularly the cluster centroids,
and the reassignment of data points to these updated clusters,
the algorithm effectively captures the dynamic patterns of
CAM flooding attacks, thereby enhancing detection accuracy.

To assess the effectiveness of our approach, we conducted
extensive experiments using seven diverse datasets spanning
a range of network scenarios and attack intensities. We com-
pared the detection results of our method with four alterna-
tive clustering methods, including the traditional online K-
means algorithm, employing the same datasets. Our evaluation
metrics encompass Accuracy and F-Score, which provide a
comprehensive evaluation of the detection performance.

The remainder of the paper is structured as follows: Section
II, provides an overview of related works. Section III focuses
on the problem statement and introduces the datasets used.
Section IV presented the proposed method, followed by the
experiment results in Section V. Finally, Section VI concludes
the paper by summarizing the findings and providing recom-
mendations for future research.

II. RELATED WORK

Extensive research efforts have been dedicated to the de-
tection of CAM attacks, with a particular focus on the ap-
plication of machine learning (ML) models for identifying
CAM flooding attacks in VANETs. In their work, Tan et
al. [7] introduced a hierarchical clustering method to detect
DoS attacks in vehicular networks. They defined traffic flow
as a sequence of packets transmitted from source to destination
within a specific time interval, extracted from Roadside Units
(RSUs). By utilizing dynamic time warping as a distance
measurement, they formed clusters of similar traffic flows.
The authors built a model using a Python-generated dataset.
Although their approach effectively reduced the authentication
burden on vehicles, it incurred a notable overhead.

Singh et al. [8] presented a supervised learning system
designed to detect Distributed Denial-of-Service (DDoS) at-
tacks in a Vehicle-to-Infrastructure (V2I) scenario utilizing
Software-Defined Networking (SDN) architecture. They devel-
oped a binary classifier by training various machine learning
algorithms and found that the gradient boosting tree algorithm
yielded the best results. However, the study lacked comprehen-
sive information about the generated datasets and simulation
scenarios, including specifics regarding the number of attacker
nodes and attack rates, which limited a detailed analysis of
their approach.

Yu et al. [9] introduced a machine learning-based system
for detecting DDoS attacks in software-defined vehicular
networks. They leveraged the OpenFlow concept to gather
flow statistics and extracted features from OpenFlow tables
pertaining to various transport layer protocols. Through evalu-
ation using established datasets and training a Support Vector
Machine (SVM), they achieved an accuracy rate exceeding

97%. However, it is important to note that the simulation
was conducted on virtual machines, which may not fully
capture the dynamic characteristics of VANETs, such as node
mobility and changing topology, potentially limiting the real-
world applicability of their findings.

Sharshembiev et al. [10] introduced a supervised machine
learning-based system for detecting DoS attacks. They em-
ployed TensorFlow’s linear classifier, specifically logistic re-
gression, to classify network traffic as normal or malicious.
The research utilized simulated data with diverse configuration
scenarios. By leveraging the capabilities of TensorFlow, the
proposed system aimed to accurately identify and mitigate
DoS attacks in vehicular networks. Since they collect all data
in a single place, it has large communication overhead.

Goncalves et al. [11] introduced an intelligent hierarchical
security framework for Vehicular VANETs to address DoS and
fabrication message attacks. The proposed framework utilized
multiple machine learning algorithms and ensemble learning
techniques, such as voting, stacking, and custom stacking, to
enhance the detection capabilities. To cater to the diverse needs
and characteristics of VANET entities, the authors employed
different algorithms at various levels to detect attacks at
multiple levels within the network. Due to the complexity of
the model, it may not detect the attack in a timely manner.

In [12], the Attacked Packet Detection Algorithm to identify
DoS attacks in VANETs was proposed. The algorithm was
implemented in RSUs to monitor and track vehicles that send
malicious packets, utilizing vehicle positions and On-Board
Units (OBUs) for detection. The method demonstrated an
increased overhead, delay, and reduced delivery ratio.

In [13], a method that utilizes an Enhanced Attacked Packet
Detection Algorithm (EAPDA) deployed in each RSU in
VANETs is proposed. The approach involves vehicles request-
ing traffic and other information from an RSU during a specific
time slot. The RSU then compares the packet counts sent by
each car and identifies malicious vehicles that are sending
packets at a rate twice as high as the normal rate. These
identified vehicles are subsequently excluded from further
communication with the RSU. As traffic volume rises, the
algorithm places excessive load on the RSU.

In [14], a packet detection algorithm for identifying nodes
in a VANETs that maliciously send packets to disrupt the
network’s operations is proposed. The communication between
nodes is facilitated through RSUs, which play a crucial role in
monitoring the network. The algorithm focuses on evaluating
the frequency and velocity of each node and comparing them
against predetermined thresholds. Research results are rich and
targeted but faces issues of costly implementation and a lack
of universal applicability.

Out of the aforementioned related works, [7], [8], [9], [10]
and [11] have utilized machine learning techniques; never-
theless, none of them have employed an online method. In
Section V we conduct a comparative analysis between our
method and these five approaches.

In Table I, we perform a comparative analysis between our
approach and these five methods, with a specific focus on

2023 IEEE Global Communications Conference: Mobile and Wireless Networks

2993

TABLE I: Comparison between Modified Online K-means and other ML proposed methods to detect DoS attacks

Reference ML Method ML-Task Online Update Metrics Memory Usage Accuracy
Tan et al. [7] Unsupervised Clustering No DR1 Large NA

Singh et al. [8] Supervised Binary Classification No TP, TN, FP, FN Medium NA
Yu et al. [9] Supervised Binary Classification No DR Medium %98

Sharshembiev et al. [10] Supervised Anomaly Detection No Pre2, Recall, F-1 Medium %97
Goncalev et al. [11] Supervised Multi-Classification No TPR3, FPR4, Acc Medium >%92

Modified Online K-means Unsupervised Clustering Yes AUC, Pre, F-1, Acc Low >%98
1 Detection Rate 2 Precision 3 True Positive Rate 4 False Positive Rate

method features, memory usage, and accuracy. Our Modified
Online K-means approach excels in reducing storage require-
ments and incorporates the inherent advantages of online
methods, while also addressing potential drawbacks associated
with them.

This study introduces a novel online approach designed
to facilitate prompt and precise detection of DoS attacks in
VANETs. Our proposed method offers several notable advan-
tages, including strong performance and continuous learning
capabilities achieved through regular data updates. To assess
the effectiveness of our approach, we perform a comprehen-
sive comparison against a similar online method and several
other clustering methods commonly employed in DoS attack
detection. Through this comparison, we aim to showcase the
efficacy of our proposed online method in enabling early and
accurate detection of DoS attacks in VANETs.

III. PROBLEM STATEMENT

CAMs play a pivotal role in vehicular networks. However,
they are susceptible to shortcomings, particularly flooding
attacks that can disrupt network operations, as noted in [15].
To mitigate the impact of CAM flooding attacks, the im-
plementation of robust security mechanisms and intrusion
detection systems becomes imperative. These mechanisms
should effectively detect and filter out fake CAM messages
to ensure data authenticity. Moreover, fostering cooperation
among vehicles and leveraging cryptographic techniques can
further enhance network security. While these methods are
effective in preventing external DoS attacks, they may not
provide sufficient defense against insider attacks. Insiders can
still disrupt VANETs by saturating them with encrypted mes-
sages, thereby impeding genuine communication. There are
two primary types of DoS attacks: flooding, which inundates
the system with messages, and crashing, which exploits vul-
nerabilities to induce system crashes. In Figure 1, an attacker
is depicted attempting a DoS attack on nearby vehicles.

We conducted our DoS attack detection experiments based
on the scenario described in [16]. The study focused on
flooding attacks targeting specific entities in VANETs. They
generated 21 datasets, categorized as follows: seven datasets
with DoS attacks occurring within 1 to 10% of the normal
data, seven datasets with attacks occurring within 10 to 20%
of the normal data, and seven datasets with attacks occurring
within 20 to 30% of the normal data. Each dataset has its own
map size, average vehicle density, and peak vehicle density, as
detailed in Tables II, III, and IV of [16]. The attack simulations

Fig. 1: DoS attack in VANET

were performed on seven different maps, and the frequency of
attacker-sent messages was random. For our experiments, we
selected the datasets where the DoS attacks occurred within
1 to 10% of the normal data. The data generation process
followed the scenario outlined in [16].

Table V in [16] provides the parameters used for generating
normal vehicle Cooperative Awareness Messages. A CAM
is generated when there is a significant change in position,
heading, or speed, with a minimum time interval of 100
ms between messages. However, DoS attacker nodes may
deviate from these rules and send messages at a higher
frequency. To detect attacks, feature extraction is performed
on received CAM messages, including the time difference,
position difference, speed difference, heading difference, and
acceleration difference between consecutive messages from
the same vehicle. These features are used as input for our
intrusion detection system. All extracted features for a CAM
message are treated as a data point. Through the application
of our clustering approach to these data points, with storage
either on a shared server or in the cloud, our objective is to
achieve real-time attack detection and subsequently implement
the necessary countermeasures.

IV. PROPOSED METHOD

There are various AI techniques for intrusion detection
system (IDS) [17]. They can be supervised or unsupervised,
offline or online. Supervised methods are normally used when
samples of typical behavior are available and labeled. A certain
percent of data is used for training and the test is based on
the learning achieved in the training phase. In unsupervised

2023 IEEE Global Communications Conference: Mobile and Wireless Networks

2994

methods, there is no separate phase of training to learn from
and the learning algorithm is left to discover the structures in
the datasets. In other words, it is being trained continuously.
By knowing typical attacks in advance, supervised methods
can be more accurate than unsupervised ones. Though, missing
instances of anomalies in the training phase may affect their
accuracy. Also, in comparison with generating unlabeled data,
generating labeled data is often difficult, costly, and time-
consuming. The fact that the offline methods need to collect
a certain amount of data and preprocess them shows that they
are more time consuming and they need more computational
resources, disk space, and memory.

Online methods are more adaptive to changes in the data.
If a drift occurs in the test data, this method can adapt to it
in real-time, while an offline method needs to wait for a new
set of batch data to be processed. Regarding the advantages of
online methods and unlabeled data, we used a model with such
characteristics as an IDS to identify DoS attacks in VANETs.

One of the most important unsupervised learning techniques
is clustering. It partitions a set of data points using some
measurement of similarity (e.g., distance). The goal is to
find subgroups within heterogeneous data such that each
individual cluster has greater homogeneity than the whole [18].
Clustering methods are used in various applications such as
anomaly detection, Ad Hoc Networks, and sensor networks.
There are a variety of clustering methods, each one has its
own benefits and limitations. One of those techniques is the
K-means clustering model, where it is trained on unlabeled
data and tries to identify similar group of data. K-means
clustering can work in offline or online mode to find malicious
patterns. Regarding the advantages of online K-means includ-
ing popularity, simplicity, and efficiency, our contribution is
the modification of traditional online K-means to improve
detection of DoS attack in VANETs. In traditional online K-
means, initially, as points are arriving one after another in
sequence, two random points are chosen as centroids. The
online algorithm will calculate Euclidean distance of each
arrival point P to those centers. The closest centroid will be
chosen as the center of the cluster to which this point belongs,
and this centroid will be adjusted according to the following
formula:

ci =
p+ clusters[i]× ci

clusters[i] + 1
(1)

In this formula, ci represents the centroid of cluster i.
clusters[i], is number of instances of cluster i. As the tradi-
tional online K-means considers all the data points it receives
for tuning its centroids, we tried to use one-class SVM to
find the outliers that affected the tuning of the centroids and
decreased the effects of those points on adjusted centroids.
One-class SVM is an unsupervised method to detect outliers
by separating all the outliers from inliers using a hypersphere
in the feature space and also by minimizing the volume of it,
to minimize the effect of outliers in the solution [19].

In our work, the Radial Basis Function (RBF) kernel of
one-class SVM assists to separate outliers from non-outliers.

RBF-kernel is suitable for non-linear data and it has efficient
utilization for computing memory. The one-class SVM model
treats the points inside the hypersphere (inliers) to be class +1
and points outside it to be class -1.

In the algorithm, data is continuously streamed, and for each
incoming point (pj), the Euclidean distance (d) is calculated
from the current center (ci) of each cluster. The cluster of
the center closest to the point is designated as the cluster for
that point. The point is placed in the cluster buffer (cli) and
the cluster center is updated using Formula 1. This process is
repeated for each point until the buffer of a specific cluster
contains 200 samples (num). At this juncture, we apply a
one-class SVM to the filled buffer with γ = 0.1, keeping all
its default hyperparameter values unchanged. The one-class
SVM classifies points as outliers or inliers. Outlier points are
then scaled down by a factor of 0.01 (factor). Subsequently,
all points, including inliers, are considered, and placed into a
buffer (no). The mean of these points is computed and then
multiplied by a weight w2. Meanwhile, the current cluster
center is multiplied by a weight w1. The center of the cluster
is then updated to the average of these two newly computed
points. For the purpose of our analysis, we selected w1 = 0.67
and w2 = 0.33. Following this, the cluster buffer is emptied
until it is once again filled with 200 new instances for the
application of the one-class SVM. The pseudocode of the
algorithm is given in Algorithm 1.

V. EXPERIMENT

In our experiments, we selected K-means as our foun-
dational method due to its simplicity, effectiveness, and
widespread use. Additionally, K-means stands as an optimal
solution for certain problems. However, it is essential to
acknowledge the limitations of K-means, which include:

• High Sensitivity to Outliers and Data Drift: K-means is
notably sensitive to the presence of outliers and variations
in data over time.

• Prior Specification of Cluster Count and Initial Seed:
K-means necessitates the predefined specification of the
cluster count and the initial seed values.

• Prone to Local Optima: The algorithm has a tendency
to converge towards local optima, leading to suboptimal
solutions.

In order to address these shortcomings inherent to K-means,
we propose a modified version of the method that overcomes
these limitations and offers a near-optimal solution. In our
particular problem context, where our aim is to detect DoS
attacks rather than discerning various attack patterns, we opted
for K=2 clusters, which yielded satisfactory results.

In the traditional online K-means, for each arriving point,
the center of a cluster where this point belongs is updated
and learning is continuously performed. The way the centroid
is updated causes some abnormality. Fig 2 shows one such a
case. In Fig 2, by considering a new point, marked as newly
arrived outlier point, the centers will be updated, and the
correct clusters shown by steady line may change to incorrect
clusters as shown by dashed lines.

2023 IEEE Global Communications Conference: Mobile and Wireless Networks

2995

Algorithm 1 Modified Online K-means Algorithm
Input:
Dataset: A sequence of points pj , j = 0...n,
K: Number of clusters,
w1: Weight for scaling current cluster center,
w2: Weight for scaling the computed mean,
num: Buffer size,
factor: Factor for outlier adjustment
Output:
K clusters

1: //clusters[i]: Counter of the instances of cluster i
2: //cli: A buffer for holding instances of cluster i
3: //no: A buffer to keep non-outliers and outliers
4: //so: A buffer that keeps the output of SVM application on cli
5: Set all buffers to empty.
6: Initialize centroids c0 and c1 randomly between 0 and 1.
7: for j = 0 to n do // Loop over data points
8: for t = 0 to K − 1 do // Loop over clusters
9: if |clt| ≥ num then

10: so← 1 SVM(clt)
11: for outlier ∈ so do
12: Append outlier ×factor to buffer no
13: end for
14: for non-outlier ∈ so do
15: Append non-outlier to buffer no
16: end for
17: clm← Mean(no)
18: ct ← w1ct+w2clm

2
19: clt ← []
20: end if
21: end for
22: Dist← []
23: for l = 0 to K − 1 do
24: Dist[l]← d(pj , cl)
25: end for
26: i← index of Min(Dist[0], Dist[1])
27: Assign pj to cluster with centroid ci
28: ci =

pj+(clusters[i]×ci)

clusters[i]+1

29: Append pj to cli
30: clusters[i]← clusters[i] + 1
31: end for

Fig. 2: Online K-means clustering sensitivity to outliers

In Table II, we also compared performance of our method
in detecting DoS attacks, with Traditional Online K-means,
Gaussian Mixture Model (GMM) [20], MiniBatchKmeans
[21], and offline K-means on the seven datasets using pre-
cision, F1-score and accuracy given in Equations 2, 3 and 4
[22].

Precision =
TP

TP + FP
(2)

F1− scores =
2× Precision× Recall

Precision + Recall
(3)

Accuracy =
TP + TN

TP + TN + FP + FN
(4)

In Table II, the Time and Acc (Accuracy) show the trade
off between obtaining better accuracy and the usage of CPU
time. We ran MiniBatchKmeans three times with different
initialization values and included the best results in Table II.
The results presented in Table II indicate that, in terms of
accuracy (4), our method outperforms the four methods across
all the considered datasets. Regarding the F1-score (3), our
method outperforms all other methods for all datasets, except
for a slight difference between our method and GMM in
Dataset 1. In terms of precision (2), the GMM method yields
results with a slightly better performance than ours in datasets
1, 2, 3, 4, and 6. Furthermore, as evident from our experiments
on Dataset ’Out 7,’ our method excels at clustering very large
datasets with imbalanced data in a reasonable amount of time.
It consistently outperforms the four other methods across all
three evaluation metrics: F1-scores, precision, and accuracy.

TABLE II: Accuracy of each model using various datasets

Row Dataset N-Instances N-attacks N-Normal Model Time (sec) Pre F-1 Acc

1 Out 1 65457 42264 23193

Modified Online 00:03.94 96.96 98.43 98.90

traditional Online 00:0066 76.57 86.71 91.68

GMM (diag) 00:01.97 99.98 98.52 98.12

MiniBatchKmeans 00:0012 88.12 93.67 91.28

Offline K-means 00:0060 75.05 85.73 91.14

2 Out 2 228653 127946 100707

Modified Online 00:12.63 98.13 98.94 99.08

traditional Online 00:02.23 73.3 84.58 88.23

GMM (spherical) 00:13.56 99.69 97.75 97.53

MiniBatchKmeans 00:027 99.92 87.66 90.32

Offline K-means 00:0043 0.0012 0.002 56.00

3 Out 3 234620 178999 55621

Modified Online 00:12.82 98.40 98.88 99.47

traditional Online 00:02.33 77.68 87.37 94.67

GMM (spherical) 00:07.21 99.94 96.67 95.08

MiniBatchKmeans 00:0013 93.36 96.54 94.54

Offline K-means 00:01.015 75.91 86.23 94.25

4 Out 4 1048575 775621 272954

Modified Online 00:57.73 99.31 98.95 99.45

traditional Online 00:09.67 78.16 87.69 94.29

GMM (spherical) 00:40.87 99.89 98.26 97.46

MiniBatchKmeans 00:0025 99.85 92.47 96.35

Offline K-means 00:01.84 0.00016 0.00032 73.97

5 Out 5 230432 150539 79893

Modified Online 00:12.74 97.64 98.76 99.15

traditional Online 00:02.28 75.46 85.97 91.46

GMM (spherical) 00:04.59 90.98 95.20 96.51

MiniBatchKmeans 00:0021 94.61 97.20 96.25

Offline K-means 00:0083 0 0 65.32

6 Out 6 413231 330231 83000

Modified Online 00:23.29 98.87 99.06 99.62

traditional Online 00:03.91 83.98 91.25 96.76

GMM (spherical) 00:11.98 99.97 96.49 94.58

MiniBatchKmeans 00:0018 99.90 96.43 98.61

Offline K-means 00:0071 0.0002 0.00048 79.91

7 Out 7 1048575 931508 117067

Modified Online 00:53.49 97.66 97.40 99.41

traditional Online 00:09.8 76.01 86.20 97.28

GMM (spherical) 00:25.67 71.40 83.25 95.51

MiniBatchKmeans 00:0021 96.13 98.01 96.40

Offline K-means 00:01.86 67.18 80.22 96.30

2023 IEEE Global Communications Conference: Mobile and Wireless Networks

2996

To evaluate the performance of our method in detecting DoS
attacks, in Fig 3, we compared it with traditional online K-
means in terms of Area Under The Curve (AUC) on seven
datasets.

Fig. 3: AUC comparison between Online K-means and Mod-
ified Online K-means

To assess the performance of our model on both linear
and nonlinear data, we utilized the Ordinary Least Squares
(OLS) regression results as an evaluation metric. The R-
squared value, typically used to evaluate the goodness-of-fit
in linear regression models, provides insight into the strength
of the linear relationship between independent and dependent
variables. For datasets 1 through 7, the respective R-squared
values were 0.218, 0.029, 0.035, 0.019, 0.024, 0.022, and
0.011. These values indicate the absence of a significant linear
relationship between the independent and dependent variables
for each dataset.

VI. CONCLUSION

In this paper, we presented a novel approach for detect-
ing Denial-of-Service (DoS) attacks on CAM (Cooperative
Awareness Message) messages in Vehicular Ad Hoc Networks
(VANETs) by utilizing the one-class Support Vector Machine
(SVM) algorithm to adjust the centroids obtained from the
online K-means algorithm. Our findings indicate that this tech-
nique can significantly enhance the detection of DoS attacks
on CAM messages, addressing some of the abnormalities that
may arise during centroid computation in the traditional K-
means algorithm.

While the weights used in our algorithm were determined
empirically, the results obtained were acceptable. In future
research, we plan to conduct more extensive investigations and
delve deeper into this discovery with the goal of providing
theoretical justifications for its effectiveness. To enhance our
research, we will conduct experiments with K ≥ 2 to identify
different attack patterns and include additional performance
metrics. We recognize that K-means, given its wide popularity,
simplicity, and efficiency, merits further investigation and
exploration in the realm of DoS attack detection.

REFERENCES

[1] Ejaz Ahmed and Hamid Gharavi. Cooperative vehicular networking:
A survey. IEEE Transactions on Intelligent Transportation Systems,
19(3):996–1014, 2018.

[2] Mate Boban and Pedro M. d’Orey. Exploring the practical limits of
cooperative awareness in vehicular communications. IEEE Transactions
on Vehicular Technology, 65(6):3904–3916, 2016.

[3] Zhaojun Lu, Gang Qu, and Zhenglin Liu. A survey on recent advances
in vehicular network security, trust, and privacy. IEEE Transactions on
Intelligent Transportation Systems, 20(2):760–776, 2019.

[4] Mohammed Saeed Al-kahtani. Survey on security attacks in vehicular ad
hoc networks (vanets). In 2012 6th International Conference on Signal
Processing and Communication Systems, pages 1–9, 2012.

[5] Fadi Al-Turjman and Joel Poncha Lemayian. Intelligence, security, and
vehicular sensor networks in internet of things (iot)-enabled smart-cities:
An overview. Computers Electrical Engineering, 87:106776, 2020.

[6] Jianbing Ni, Kuan Zhang, Xiaodong Lin, and Xuemin Shen. Securing
fog computing for internet of things applications: Challenges and
solutions. IEEE Communications Surveys Tutorials, 20(1):601–628,
2018.

[7] Haowen Tan, Ziyuan Gui, and Ilyong Chung. A secure and efficient cer-
tificateless authentication scheme with unsupervised anomaly detection
in vanets. IEEE Access, 6:74260–74276, 2018.

[8] Pranav Kumar Singh, Suraj Kumar Jha, Sunit Kumar Nandi, and
Sukumar Nandi. Ml-based approach to detect ddos attack in v2i
communication under sdn architecture. In TENCON 2018-2018 IEEE
Region 10 Conference, pages 0144–0149. IEEE, 2018.

[9] Yao Yu, Lei Guo, Ye Liu, Jian Zheng, and YUE Zong. An efficient
sdn-based ddos attack detection and rapid response platform in vehicular
networks. IEEE access, 6:44570–44579, 2018.

[10] Kumar Sharshembiev, Seong-Moo Yoo, and Elbasher Elmahdi. Protocol
misbehavior detection framework using machine learning classification
in vehicular ad hoc networks. Wireless Networks, 27(3):2103–2118,
2021.

[11] Fábio Gonçalves, Joaquim Macedo, and Alexandre Santos. An in-
telligent hierarchical security framework for vanets. Information,
12(11):455, 2021.

[12] S. RoselinMary, M. Maheshwari, and M. Thamaraiselvan. Early detec-
tion of dos attacks in vanet using attacked packet detection algorithm
(apda). In 2013 International Conference on Information Communica-
tion and Embedded Systems (ICICES), pages 237–240, 2013.

[13] Amarpreet Singh and Priya Sharma. A novel mechanism for detecting
dos attack in vanet using enhanced attacked packet detection algorithm
(eapda). In 2015 2nd International Conference on Recent Advances in
Engineering Computational Sciences (RAECS), pages 1–5, 2015.

[14] Sushil Kumar and Kulwinder Singh Mann. Prevention of dos attacks by
detection of multiple malicious nodes in vanets. In 2019 International
Conference on Automation, Computational and Technology Management
(ICACTM), pages 89–94, 2019.

[15] Sherali Zeadally, Ray Hunt, Yuh-Shyan Chen, Angela Irwin, and Aamir
Hassan. Vehicular ad hoc networks (vanets): status, results, and chal-
lenges. Telecommunication Systems, 50:217–241, 2012.

[16] Fábio Gonçalves, Bruno Ribeiro, Oscar Gama, João Santos, António
Costa, Bruno Dias, Maria João Nicolau, Joaquim Macedo, and Alexan-
dre Santos. Synthesizing datasets with security threats for vehicular
ad-hoc networks. In GLOBECOM 2020-2020 IEEE Global Communi-
cations Conference, pages 1–6. IEEE, 2020.

[17] Dilara Gumusbas and Tulay Yildirim. Ai for cybersecurity: Ml-based
techniques for intrusion detection systems. In Advances in Machine
Learning/Deep Learning-based Technologies, pages 117–140. Springer,
2022.

[18] Christoph F Eick, Nidal Zeidat, and Zhenghong Zhao. Supervised
clustering-algorithms and benefits. In 16Th IEEE international confer-
ence on tools with artificial intelligence, pages 774–776. IEEE, 2004.

[19] David MJ Tax and Robert PW Duin. Support vector data description.
Machine learning, 54(1):45–66, 2004.

[20] Geoffrey J McLachlan and Kaye E Basford. Mixture models: Inference
and applications to clustering, volume 38. M. Dekker New York, 1988.

[21] David Sculley. Web-scale k-means clustering. In Proceedings of the
19th international conference on World wide web, pages 1177–1178,
2010.

[22] Marina Sokolova and Guy Lapalme. A systematic analysis of per-
formance measures for classification tasks. Information processing &
management, 45(4):427–437, 2009.

2023 IEEE Global Communications Conference: Mobile and Wireless Networks

2997

